Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38305824

In this study, a comprehensive investigation of a set of phytochemicals to identify potential inhibitors for the Forkhead box protein M1 (FOXM1) was conducted. FOXM1 is overexpressed in glioblastoma (GBM) cells and plays a crucial role in cell cycle progression, proliferation, and invasion. FOXM1 inhibitors have shown promising results in preclinical studies, and ongoing clinical trials are assessing their efficacy in GBM patients. However, there are limited studies on the identification of novel compounds against this attractive therapeutic target. To address this, the NPACT database containing 1,574 phytochemicals was used, employing a hierarchical multistep docking approach, followed by an estimation of relative binding free energy. By fixing user-defined XP-dock and MM-GBSA cut-off scores of -6.096 and -37.881 kcal/mol, the chemical space was further narrowed. Through exhaustive analysis of molecular binding interactions and various pharmacokinetics profiles, we identified four compounds, namely NPACT00002, NPACT01454, NPACT00856, and NPACT01417, as potential FOXM1 inhibitors. To assess the stability of protein-ligand binding in dynamic conditions, 100 ns Molecular dynamics (MD) simulations studies were performed. Furthermore, Molecular mechanics with generalized Born and surface area solvation (MM-GBSA) based binding free energy estimations of the entire simulation trajectories revealed a strong binding affinity of all identified compounds towards FOXM1, surpassing that of the control drug Troglitazone. Based on extensively studied multistep docking approaches, we propose that these molecules hold promise as FOXM1 inhibitors for potential therapeutic applications in GBM. However, experimental validation will be necessary to confirm their efficacy as targeted therapies.Communicated by Ramaswamy H. Sarma.

3.
Int J Mol Sci ; 24(9)2023 May 02.
Article En | MEDLINE | ID: mdl-37175848

Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.


Amyloid Precursor Protein Secretases , Neuroblastoma , Humans , Amyloid Precursor Protein Secretases/metabolism , Signal Transduction/genetics , Cell Line , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neuroblastoma/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Gene Amplification
4.
Front Endocrinol (Lausanne) ; 13: 934706, 2022.
Article En | MEDLINE | ID: mdl-36303872

Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the metabolic alterations in adolescents with T2D. Methods: We performed a cross sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal Complications in Adolescents with type 2 diabetes through Research (iCARE) cohort study, to explore the molecular changes in adolescents with T2D. Results: Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others. Conclusions: We identified DMRs and metabolites that merit further investigation to determine their significance in controlling gene expression and metabolism which could define T2D risk in adolescents.


Diabetes Mellitus, Type 2 , Humans , Adolescent , Diabetes Mellitus, Type 2/metabolism , DNA Methylation , Cross-Sectional Studies , Cohort Studies , Leukocytes, Mononuclear/pathology , Metabolome
5.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article En | MEDLINE | ID: mdl-35886952

Glioblastoma multiforme (GBM) cancer stem cells (GSCs) are one of the strongest contributing factors to treatment resistance in GBM. Identification of biomarkers capable of directly affecting these cells within the bulk tumor is a major challenge associated with the development of new targeting strategies. In this study, we focus on understanding the potential of the multifunctional extraordinaire survivin as a biomarker for GSCs. We analyzed the expression profiles of this gene using various publicly available datasets to understand its importance in stemness and other cancer processes. The findings from these studies were further validated using human GSCs isolated from a GBM cell line. In these GSCs, survivin was inhibited using the dietary phytochemical piperine (PIP) and the subsequent effects on stemness, cancer processes and Temozolomide were investigated. In silico analysis identified survivin to be one of the most significant differentially regulated gene in GSCs, in comparison to common stemness markers. Further validation studies on the isolated GSCs showed the importance of survivin in stemness, cancer progression and therapy resistance. Taken together, our study identifies survivin as a more consistent GSC marker and also suggests the possibility of using survivin inhibitors along with standard of care drugs for better therapeutic outcomes.


Brain Neoplasms , Cytochrome P-450 Enzyme Inhibitors , Glioblastoma , Neoplastic Stem Cells , Piperidines , Survivin , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Survivin/genetics , Survivin/metabolism
6.
Circ Heart Fail ; 15(5): e008547, 2022 05.
Article En | MEDLINE | ID: mdl-35418250

BACKGROUND: High doses of doxorubicin put cancer patients at risk for developing dilated cardiomyopathy. Previously, we showed that doxorubicin treatment decreases SIRT3 (sirtuin 3), the main mitochondrial deacetylase and increases protein acetylation in rat cardiomyocytes. Here, we hypothesize that SIRT3 expression can attenuate doxorubicin induced dilated cardiomyopathy in vivo by preventing the acetylation of mitochondrial proteins. METHODS: Nontransgenic, M3-SIRT3 (truncated SIRT3; short isoform), and M1-SIRT3 (full-length SIRT3; mitochondrial localized) transgenic mice were treated with doxorubicin for 4 weeks (8 mg/kg body weight per week). Echocardiography was performed to assess cardiac structure and function and validated by immunohistochemistry and immunofluorescence (n=4-10). Mass spectrometry was performed on cardiac mitochondrial peptides in saline (n=6) and doxorubicin (n=5) treated hearts. Validation was performed in doxorubicin treated primary rat and human induced stem cell derived cardiomyocytes transduced with adenoviruses for M3-SIRT3 and M1-SIRT3 and deacetylase deficient mutants (n=4-10). RESULTS: Echocardiography revealed that M3-SIRT3 transgenic mice were partially resistant to doxorubicin induced changes to cardiac structure and function whereas M1-SIRT3 expression prevented cardiac remodeling and dysfunction. In doxorubicin hearts, 37 unique acetylation sites on mitochondrial proteins were altered. Pathway analysis revealed these proteins are involved in energy production, fatty acid metabolism, and oxidative stress resistance. Increased M1-SIRT3 expression in primary rat and human cardiomyocytes attenuated doxorubicin-induced superoxide formation, whereas deacetylase deficient mutants were unable to prevent oxidative stress. CONCLUSIONS: Doxorubicin reduced SIRT3 expression and markedly affected the cardiac mitochondrial acetylome. Increased M1-SIRT3 expression in vivo prevented doxorubicin-induced cardiac dysfunction, suggesting that SIRT3 could be a potential therapeutic target for mitigating doxorubicin-induced dilated cardiomyopathy.


Cardiomyopathy, Dilated , Doxorubicin , Oxidative Stress , Sirtuin 3 , Acetylation/drug effects , Animals , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/prevention & control , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Heart Failure/metabolism , Humans , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Rats , Sirtuin 3/genetics , Sirtuin 3/metabolism
7.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Article En | MEDLINE | ID: mdl-35298717

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Aging/metabolism , Axons/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Energy Metabolism , Insulin-Like Growth Factor I/metabolism , Sensory Receptor Cells/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Axons/drug effects , Axons/metabolism , Base Sequence , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Respiration/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Glycolysis/drug effects , HEK293 Cells , Humans , Insulin-Like Growth Factor I/genetics , Liver/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , Neuronal Outgrowth/drug effects , Polymers/metabolism , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Rats, Sprague-Dawley , Sensory Receptor Cells/pathology , Signal Transduction/drug effects
8.
Am J Transl Res ; 13(10): 11353-11363, 2021.
Article En | MEDLINE | ID: mdl-34786063

Colon adenocarcinoma (COAD) is a common tumor of the gastrointestinal tract with a high mortality rate. Current research has identified many genes associated with immune infiltration that play a vital role in the development of COAD. In this study, we analysed the prognostic and diagnostic features of such immune-related genes in the context of colonic adenocarcinoma (COAD). We analysed 17 overlapping gene expression profiles of COAD and healthy samples obtained from TCGA-COAD and public single-cell sequencing resources, to identify potential therapeutic COAD targets. We evaluated the abundance of immune infiltration with those genes using the TIMER (Tumor Immune Estimation Resource) deconvolution method. Subsequently, we developed predictive and survival models to assess the prognostic value of these genes. The LGALS4 (Galectin-4) gene was found to be significantly (P<0.05) downregulated in COAD and bladder urothelial carcinoma (BLCA) compared to healthy samples. We identified LGALS4 as a prognostic and diagnostic marker for multiple cancer types, including COAD and BLCA. Our analysis reveals a series of novel candidate drug targets, as well as candidate molecular markers, that may explain the pathogenesis of COAD and BLCA. LGALS4 gene is associated with multiple cancer types and is a possible prognostic, as well as diagnostic, marker of COAD and BLCA.

9.
Cells ; 10(10)2021 10 15.
Article En | MEDLINE | ID: mdl-34685742

It is imperative to identify the mechanisms that confer stemness to the cancer cells for more effective targeting. Moreover, there are not many studies on the link between stemness characteristics and the immune response in tumours. Therefore, in the current study involving GBM, we started with the study of BIRC5 (one of the rare genes differentially expressed in normal and cancer cells) and CXCR4 (gene involved in the survival and proliferation of CSCs). Together, these genes have not been systematically explored. We used a set of 27 promoter methylated regions in GBM. Our analysis showed that four genes corresponding to these regions, namely EOMES, BDNF, HLA-A, and PECAM1, were involved with BIRC5 and CXCR4. Interestingly, we found EOMES to be very significantly involved in stemness and immunology and it was positively correlated to CXCR4. Additionally, BDNF, which was significant in methylation, was negatively correlated to BIRC5.


Brain Neoplasms/genetics , Brain Neoplasms/immunology , Genes, Neoplasm , Glioblastoma/genetics , Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplastic Stem Cells/metabolism , Brain Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/pathology , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Protein Interaction Maps/genetics , Reproducibility of Results
10.
Int J Mol Sci ; 22(11)2021 May 28.
Article En | MEDLINE | ID: mdl-34071236

Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia; cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1 gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.


Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Metabolic Networks and Pathways , Metabolome , Microbiota , Transcriptome , Acetyl-CoA C-Acetyltransferase/metabolism , Actinobacteria , Amino Acids, Neutral , Bacteria/genetics , Bacteria/metabolism , Biomarkers, Tumor , Clostridiales , Computational Biology , Gastrointestinal Microbiome/physiology , Humans , Metabolomics , Sequence Analysis, RNA , Staphylococcus
11.
Endocrinology ; 162(7)2021 07 01.
Article En | MEDLINE | ID: mdl-34019639

Tafazzin (TAZ) is a cardiolipin (CL) biosynthetic enzyme important for maintaining mitochondrial function. TAZ affects both the species and content of CL in the inner mitochondrial membrane, which are essential for normal cellular respiration. In pancreatic ß cells, mitochondrial function is closely associated with insulin secretion. However, the role of TAZ and CL in the secretion of insulin from pancreatic islets remains unknown. Male 4-month-old doxycycline-inducible TAZ knock-down (KD) mice and wild-type littermate controls were used. Immunohistochemistry was used to assess ß-cell morphology in whole pancreas sections, whereas ex vivo insulin secretion, CL content, RNA-sequencing analysis, and mitochondrial oxygen consumption were measured from isolated islet preparations. Ex vivo insulin secretion under nonstimulatory low-glucose concentrations was reduced ~52% from islets isolated from TAZ KD mice. Mitochondrial oxygen consumption under low-glucose conditions was also reduced ~58% in islets from TAZ KD animals. TAZ deficiency in pancreatic islets was associated with significant alteration in CL molecular species and elevated polyunsaturated fatty acid CL content. In addition, RNA-sequencing of isolated islets showed that TAZ KD increased expression of extracellular matrix genes, which are linked to pancreatic fibrosis, activated stellate cells, and impaired ß-cell function. These data indicate a novel role for TAZ in regulating pancreatic islet function, particularly under low-glucose conditions.


Acyltransferases/deficiency , Acyltransferases/physiology , Insulin Secretion/physiology , Islets of Langerhans/physiology , Mitochondria/physiology , Acyltransferases/genetics , Animals , Cardiolipins/analysis , Cardiolipins/chemistry , Doxycycline/pharmacology , Fatty Acids, Unsaturated/analysis , Female , Fibrosis , Gene Knockdown Techniques , Islets of Langerhans/chemistry , Islets of Langerhans/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidation-Reduction , Oxygen Consumption/physiology , Pancreas/pathology
12.
Stem Cell Rev Rep ; 16(5): 828-852, 2020 10.
Article En | MEDLINE | ID: mdl-32691369

Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.


Drug Development , Neoplasms/drug therapy , Neoplasms/metabolism , Stem Cells/metabolism , Survivin/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Survivin/chemistry , Survivin/genetics
13.
J Rheumatol ; 47(11): 1614-1623, 2020 11 01.
Article En | MEDLINE | ID: mdl-31676691

OBJECTIVE: Polymorphisms in human major histocompatibility complex (MHC) are the strongest genetic associations with rheumatoid arthritis (RA). Epigenome-wide methylation studies suggest DNA methylation changes within MHC may contribute to disease susceptibility. We profiled MHC-specific methylated CpG (5'-C-phosphate-G-3') in autoantibody-positive patients with RA and matched unaffected anticitrullinated protein antibodies-negative first-degree relatives (ACPA-/FDR) from an indigenous North American (INA) population that is known to have prevalent RA. METHODS: DNA was isolated from whole blood and targeted bisulfite sequencing was used to profile methylated CpG in patients with RA and ACPA-/FDR. Differentially methylated CpG loci (DML) were mapped and gene annotated. Ingenuity pathway analysis (IPA) was used for curating biomolecular networks of mapped genes. Transcript abundance was determined by quantitative (q)PCR. RESULTS: We identified 74 uniquely methylated CpG sites within the MHC region that were differentially methylated in patients with RA (p < 0.05), compared to ACPA-/FDR. Of these, 32 DML were located on 22 genes. IPA showed these genes are involved in regulating the nuclear factor-κB complex and processes involved in antigen presentation, and immune cell crosstalk in autoimmunity. Pearson correlation analysis demonstrated a negative association between differentially methylated CpG in the C6ORF10 gene and risk factors associated with RA. Analysis by qPCR confirmed differential abundance of C6ORF10, TNXB, and HCG18 mRNA in patients with RA compared to ACPA-/FDR. CONCLUSION: Our results confirm the presence of differential methylation at specific gene loci within the MHC region of INA patients with RA. These epigenetic signatures may precede disease onset, or alternatively, may be a result of developing RA.


Arthritis, Rheumatoid , Arthritis, Rheumatoid/genetics , Autoantibodies , DNA Methylation , Humans , Polymorphism, Genetic , Sulfites
14.
Pediatr Diabetes ; 21(2): 233-242, 2020 03.
Article En | MEDLINE | ID: mdl-31802590

OBJECTIVE: This study aimed to determine the degree of left ventricular (LV) dysfunction and its determinants in adolescents with type 2 diabetes (T2D). We hypothesized that adolescents with T2D would display impaired LV diastolic function and that these cardiovascular complications would be exacerbated in youth exposed to maternal diabetes in utero. METHODS: Left ventricular structure and function, carotid artery intima media thickness and strain, and serum metabolomic profiles were compared between adolescents with T2D (n = 121) and controls (n = 34). Sub-group analyses examined the role of exposure to maternal diabetes as a determinant of LV or carotid artery structure and function among adolescents with T2D. RESULTS: Adolescents with T2D were 15.1 ± 2.5 years old, (65% female, 99% Indigenous), had lived with diabetes for 2.7 ± 2.2 years, had suboptimal glycemic control (HbA1c = 9.4 ± 2.6%) and 58% (n = 69) were exposed to diabetes in utero. Compared to controls, adolescents with T2D displayed lower LV diastolic filling (early diastole/atrial filling rate ratio [E/A] = 1.9 ± 0.6 vs 2.2 ± 0.6, P = 0.012), lower LV relaxation and carotid strain (0.12 ± 0.05 vs 0.17 ± 0.05, P = .03) and elevated levels of leucine, isoleucine and valine. Among adolescents with T2D, exposure to diabetes in utero was not associated with differences in LV diastolic filling, LV relaxation, carotid strain or branched chain amino acids. CONCLUSIONS: Adolescents with T2D display LV diastolic dysfunction, carotid artery stiffness, and elevated levels of select branch chain amino acids; differences were not associated with exposure to maternal diabetes in utero.


Diabetes Mellitus, Type 2/physiopathology , Heart/physiopathology , Prenatal Exposure Delayed Effects , Adolescent , Amino Acids, Branched-Chain/blood , Carotid Intima-Media Thickness , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Echocardiography , Female , Heart/diagnostic imaging , Humans , Male , Pregnancy , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Young Adult
15.
Brain ; 143(1): 94-111, 2020 01 01.
Article En | MEDLINE | ID: mdl-31855247

Cerebral choline metabolism is crucial for normal brain function, and its homoeostasis depends on carrier-mediated transport. Here, we report on four individuals from three families with neurodegenerative disease and homozygous frameshift mutations (Asp517Metfs*19, Ser126Metfs*8, and Lys90Metfs*18) in the SLC44A1 gene encoding choline transporter-like protein 1. Clinical features included progressive ataxia, tremor, cognitive decline, dysphagia, optic atrophy, dysarthria, as well as urinary and bowel incontinence. Brain MRI demonstrated cerebellar atrophy and leukoencephalopathy. Moreover, low signal intensity in globus pallidus with hyperintensive streaking and low signal intensity in substantia nigra were seen in two individuals. The Asp517Metfs*19 and Ser126Metfs*8 fibroblasts were structurally and functionally indistinguishable. The most prominent ultrastructural changes of the mutant fibroblasts were reduced presence of free ribosomes, the appearance of elongated endoplasmic reticulum and strikingly increased number of mitochondria and small vesicles. When chronically treated with choline, those characteristics disappeared and mutant ultrastructure resembled healthy control cells. Functional analysis revealed diminished choline transport yet the membrane phosphatidylcholine content remained unchanged. As part of the mechanism to preserve choline and phosphatidylcholine, choline transporter deficiency was implicated in impaired membrane homeostasis of other phospholipids. Choline treatments could restore the membrane lipids, repair cellular organelles and protect mutant cells from acute iron overload. In conclusion, we describe a novel childhood-onset neurometabolic disease caused by choline transporter deficiency with autosomal recessive inheritance.


Antigens, CD/genetics , Heredodegenerative Disorders, Nervous System/genetics , Organic Cation Transport Proteins/genetics , Adolescent , Ataxia/genetics , Ataxia/physiopathology , Atrophy , Cerebellum/diagnostic imaging , Cerebellum/pathology , Choline/pharmacology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cytoplasmic Vesicles/drug effects , Cytoplasmic Vesicles/ultrastructure , Deglutition Disorders/genetics , Deglutition Disorders/physiopathology , Dysarthria/genetics , Dysarthria/physiopathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Fecal Incontinence/genetics , Fecal Incontinence/physiopathology , Female , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Frameshift Mutation , Globus Pallidus/diagnostic imaging , Heredodegenerative Disorders, Nervous System/diagnostic imaging , Heredodegenerative Disorders, Nervous System/pathology , Heredodegenerative Disorders, Nervous System/physiopathology , Homozygote , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Leukoencephalopathies/physiopathology , Magnetic Resonance Imaging , Male , Microscopy, Electron , Mitochondria/drug effects , Mitochondria/ultrastructure , Nootropic Agents/pharmacology , Optic Atrophy/genetics , Optic Atrophy/physiopathology , Pedigree , Ribosomes/drug effects , Ribosomes/ultrastructure , Substantia Nigra/diagnostic imaging , Syndrome , Tremor/genetics , Tremor/physiopathology , Urinary Incontinence/genetics , Urinary Incontinence/physiopathology
16.
Endocrinology ; 160(8): 1907-1925, 2019 08 01.
Article En | MEDLINE | ID: mdl-31237608

Fetal exposure to gestational diabetes mellitus (GDM) and poor postnatal diet are strong risk factors for type 2 diabetes development later in life, but the mechanisms connecting GDM exposure to offspring metabolic health remains unclear. In this study, we aimed to determine how GDM interacts with the postnatal diet to affect islet function in the offspring as well as characterize the gene expression changes in the islets. GDM was induced in female rats using a high-fat, high-sucrose (HFS) diet, and litters from lean or GDM dams were weaned onto a low-fat (LF) or HFS diet. Compared with the lean control offspring, GDM exposure reduced glucose-stimulated insulin secretion in islets isolated from 15-week-old offspring, which was additively worsened when GDM exposure was combined with postnatal HFS diet consumption. In the HFS diet-fed offspring of lean dams, islet size and number increased, an adaptation that was not observed in the HFS diet-fed offspring of GDM dams. Islet gene expression in the offspring of GDM dams was altered in such categories as inflammation (e.g., Il1b, Ccl2), mitochondrial function/oxidative stress resistance (e.g., Atp5f1, Sod2), and ribosomal proteins (e.g., Rps6, Rps14). These results demonstrate that GDM exposure induced marked changes in gene expression in the male young adult rat offspring that cumulatively interact to worsen islet function, whole-body glucose homeostasis, and adaptations to HFS diets.


Diabetes, Gestational/physiopathology , Islets of Langerhans/physiology , Animals , Body Weight , Diet, High-Fat , Female , Gene Expression , Glucose/metabolism , Islets of Langerhans/pathology , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Sucrose/administration & dosage
17.
J Pediatr Gastroenterol Nutr ; 69(1): 82-87, 2019 07.
Article En | MEDLINE | ID: mdl-30789863

OBJECTIVE: Although anti-Saccharomyces cerevisiae antibodies (ASCAs) could be a useful biomarker in differentiating Crohn disease (CD) from ulcerative colitis (UC), their role as prognostic markers in children with CD has been underinvestigated. This longitudinal prospective observational study aimed to assess the prognostic value of ASCA status among children with CD managed using biologics. METHODS: The study population comprised children with inflammatory bowel disease diagnosed with CD from 2012 to 2018. Cox regression model with adjustment for a priori covariates was used to examine the response to anti-tumor necrosis factor (TNF) biological therapy among ASCA-positive patients in comparison to ASCA-negative patients. RESULTS: There were 273 measurements available from the study cohort comprising children with CD, who were followed up for a median duration of 14 months (interquartile range 5-42). ASCA-positive patients had a higher risk for moderate to severe clinical disease (odds ratio 2.88; 95% confidence interval [CI] 1.2-7.55) and extensive endoscopic distribution (odds ratio 3.30; CI 1.12-9.74) at baseline in comparison to ASCA-negative patients, respectively. In comparison to ASCA immunoglobulin G (IgG)-negative patients, ASCA IgG-positive patients who were treated with biologics had a significantly lower relapse rate (adjusted hazard ratio 0.12; CI 0.02-0.93). Ten (14%) patients had an unstable ASCA value with either ASCA immunoglobulin A or ASCA IgG status changing from positive to negative or vice versa. CONCLUSIONS: ASCA-positive children with CD present with more extensive (endoscopic) and clinically severe disease. ASCA IgG is a useful prognostic marker among children with CD who receive biologics.


Antibodies, Fungal/blood , Crohn Disease/blood , Crohn Disease/drug therapy , Immunoglobulin G/blood , Adalimumab/therapeutic use , Adolescent , Antibodies, Antineutrophil Cytoplasmic/blood , Biomarkers/blood , Child , Female , Gastrointestinal Agents/therapeutic use , Humans , Immunoglobulin A/blood , Infliximab/therapeutic use , Longitudinal Studies , Male , Prognosis , Prospective Studies , Recurrence , Saccharomyces cerevisiae/immunology , Severity of Illness Index , Tumor Necrosis Factor-alpha/antagonists & inhibitors
18.
Int J Mol Sci ; 19(7)2018 Jul 12.
Article En | MEDLINE | ID: mdl-30002286

Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.


Barth Syndrome/metabolism , Lymphocytes/metabolism , Phosphoproteins/metabolism , Barth Syndrome/pathology , Humans , Lymphocytes/pathology
19.
Crit Rev Clin Lab Sci ; 55(2): 71-101, 2018 03.
Article En | MEDLINE | ID: mdl-29308692

Since 1980, global obesity has doubled, and the incidence of cardiometabolic diseases such as type 2 diabetes and heart disease is also increasing. While genetic susceptibility and adult lifestyle are implicated in these trends, evidence from clinical cohorts, epidemiological studies and animal model experiments support a role for early-life environmental exposures in determining the long-term health of an individual, which has led to the formulation of the Developmental Origins of Health and Disease (DOHaD) theory. In fact, maternal obesity and diabetes during pregnancy, which are on the rise, are strongly associated with altered fetal growth and development as well as with lifelong perturbations in metabolic tissues. A mounting body of evidence implicates epigenetic mechanisms (e.g. DNA methylation and histone modifications) in the regulation of these effects and their transmission to future generations. This review critically discusses the current evidence (in animal model systems and humans) that implicates maternal obesity and diabetes during pregnancy in perturbing the epigenome of the next generation, and the consequential impact on growth, organ development and ultimately cardiometabolic disease progression. Additionally, this review will address some of the limitations of the DOHaD approach and areas that require further study. For example, future research requires verification of the mechanistic impact of the epigenetic marks and their persistence over the life course. Ultimately, this knowledge is needed to establish optimal screening, prevention and therapeutic approaches for children at risk of cardiometabolic disease development.


Cardiovascular Diseases , Diabetes, Gestational , Epigenomics , Maternal Exposure , Metabolic Diseases , Obesity , Animals , Feeding Behavior , Female , Humans , Infant, Newborn , Life Style , Pregnancy
...